Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Copper stress in Staphylococcus aureus leads to adaptive changes in central carbon metabolism.

Identifieur interne : 000565 ( Main/Exploration ); précédent : 000564; suivant : 000566

Copper stress in Staphylococcus aureus leads to adaptive changes in central carbon metabolism.

Auteurs : Emma Tarrant [Royaume-Uni] ; Gustavo P Riboldi ; Matthew R. Mcilvin ; Jack Stevenson ; Anna Barwinska-Sendra ; Louisa J. Stewart ; Mak A. Saito ; Kevin J. Waldron

Source :

RBID : pubmed:30443649

Descripteurs français

English descriptors

Abstract

Copper toxicity has been a long-term selection pressure on bacteria due to its presence in the environment and its use as an antimicrobial agent by grazing protozoa, by phagocytic cells of the immune system, and in man-made medical and commercial products. There is recent evidence that exposure to increased copper stress may have been a key driver in the evolution and spread of methicillin-resistant Staphylococcus aureus, a globally important pathogen that causes significant mortality and morbidity worldwide. Yet it is unclear how S. aureus physiology is affected by copper stress or how it adapts in order to be able to grow in the presence of excess copper. Here, we have determined quantitatively how S. aureus alters its proteome during growth under copper stress conditions, comparing this adaptive response in two different types of growth regime. We found that the adaptive response involves induction of the conserved copper detoxification system as well as induction of enzymes of central carbon metabolism, with only limited induction of proteins involved in the oxidative stress response. Further, we identified a protein that binds copper inside S. aureus cells when stressed by copper excess. This copper-binding enzyme, a glyceraldehyde-3-phosphate dehydrogenase essential for glycolysis, is inhibited by copper in vitro and inside S. aureus cells. Together, our data demonstrate that copper stress leads to the inhibition of glycolysis in S. aureus, and that the bacterium adapts to this stress by altering its central carbon utilisation pathways.

DOI: 10.1039/c8mt00239h
PubMed: 30443649
PubMed Central: PMC6350627


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Copper stress in Staphylococcus aureus leads to adaptive changes in central carbon metabolism.</title>
<author>
<name sortKey="Tarrant, Emma" sort="Tarrant, Emma" uniqKey="Tarrant E" first="Emma" last="Tarrant">Emma Tarrant</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK. kevin.waldron@ncl.ac.uk.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH</wicri:regionArea>
<wicri:noRegion>NE2 4HH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="P Riboldi, Gustavo" sort="P Riboldi, Gustavo" uniqKey="P Riboldi G" first="Gustavo" last="P Riboldi">Gustavo P Riboldi</name>
</author>
<author>
<name sortKey="Mcilvin, Matthew R" sort="Mcilvin, Matthew R" uniqKey="Mcilvin M" first="Matthew R" last="Mcilvin">Matthew R. Mcilvin</name>
</author>
<author>
<name sortKey="Stevenson, Jack" sort="Stevenson, Jack" uniqKey="Stevenson J" first="Jack" last="Stevenson">Jack Stevenson</name>
</author>
<author>
<name sortKey="Barwinska Sendra, Anna" sort="Barwinska Sendra, Anna" uniqKey="Barwinska Sendra A" first="Anna" last="Barwinska-Sendra">Anna Barwinska-Sendra</name>
</author>
<author>
<name sortKey="Stewart, Louisa J" sort="Stewart, Louisa J" uniqKey="Stewart L" first="Louisa J" last="Stewart">Louisa J. Stewart</name>
</author>
<author>
<name sortKey="Saito, Mak A" sort="Saito, Mak A" uniqKey="Saito M" first="Mak A" last="Saito">Mak A. Saito</name>
</author>
<author>
<name sortKey="Waldron, Kevin J" sort="Waldron, Kevin J" uniqKey="Waldron K" first="Kevin J" last="Waldron">Kevin J. Waldron</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30443649</idno>
<idno type="pmid">30443649</idno>
<idno type="doi">10.1039/c8mt00239h</idno>
<idno type="pmc">PMC6350627</idno>
<idno type="wicri:Area/Main/Corpus">000654</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000654</idno>
<idno type="wicri:Area/Main/Curation">000654</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000654</idno>
<idno type="wicri:Area/Main/Exploration">000654</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Copper stress in Staphylococcus aureus leads to adaptive changes in central carbon metabolism.</title>
<author>
<name sortKey="Tarrant, Emma" sort="Tarrant, Emma" uniqKey="Tarrant E" first="Emma" last="Tarrant">Emma Tarrant</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK. kevin.waldron@ncl.ac.uk.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH</wicri:regionArea>
<wicri:noRegion>NE2 4HH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="P Riboldi, Gustavo" sort="P Riboldi, Gustavo" uniqKey="P Riboldi G" first="Gustavo" last="P Riboldi">Gustavo P Riboldi</name>
</author>
<author>
<name sortKey="Mcilvin, Matthew R" sort="Mcilvin, Matthew R" uniqKey="Mcilvin M" first="Matthew R" last="Mcilvin">Matthew R. Mcilvin</name>
</author>
<author>
<name sortKey="Stevenson, Jack" sort="Stevenson, Jack" uniqKey="Stevenson J" first="Jack" last="Stevenson">Jack Stevenson</name>
</author>
<author>
<name sortKey="Barwinska Sendra, Anna" sort="Barwinska Sendra, Anna" uniqKey="Barwinska Sendra A" first="Anna" last="Barwinska-Sendra">Anna Barwinska-Sendra</name>
</author>
<author>
<name sortKey="Stewart, Louisa J" sort="Stewart, Louisa J" uniqKey="Stewart L" first="Louisa J" last="Stewart">Louisa J. Stewart</name>
</author>
<author>
<name sortKey="Saito, Mak A" sort="Saito, Mak A" uniqKey="Saito M" first="Mak A" last="Saito">Mak A. Saito</name>
</author>
<author>
<name sortKey="Waldron, Kevin J" sort="Waldron, Kevin J" uniqKey="Waldron K" first="Kevin J" last="Waldron">Kevin J. Waldron</name>
</author>
</analytic>
<series>
<title level="j">Metallomics : integrated biometal science</title>
<idno type="eISSN">1756-591X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anti-Infective Agents (metabolism)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Carbon (metabolism)</term>
<term>Copper (metabolism)</term>
<term>Glyceraldehyde-3-Phosphate Dehydrogenases (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Staphylococcal Infections (microbiology)</term>
<term>Staphylococcus aureus (growth & development)</term>
<term>Staphylococcus aureus (metabolism)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Anti-infectieux (métabolisme)</term>
<term>Carbone (métabolisme)</term>
<term>Cuivre (métabolisme)</term>
<term>Glyceraldehyde 3-phosphate dehydrogenases (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Infections à staphylocoques (microbiologie)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Staphylococcus aureus (croissance et développement)</term>
<term>Staphylococcus aureus (métabolisme)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Anti-Infective Agents</term>
<term>Bacterial Proteins</term>
<term>Carbon</term>
<term>Copper</term>
<term>Glyceraldehyde-3-Phosphate Dehydrogenases</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Infections à staphylocoques</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Staphylococcal Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Anti-infectieux</term>
<term>Carbone</term>
<term>Cuivre</term>
<term>Glyceraldehyde 3-phosphate dehydrogenases</term>
<term>Protéines bactériennes</term>
<term>Staphylococcus aureus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Oxidative Stress</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
<term>Stress oxydatif</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Copper toxicity has been a long-term selection pressure on bacteria due to its presence in the environment and its use as an antimicrobial agent by grazing protozoa, by phagocytic cells of the immune system, and in man-made medical and commercial products. There is recent evidence that exposure to increased copper stress may have been a key driver in the evolution and spread of methicillin-resistant Staphylococcus aureus, a globally important pathogen that causes significant mortality and morbidity worldwide. Yet it is unclear how S. aureus physiology is affected by copper stress or how it adapts in order to be able to grow in the presence of excess copper. Here, we have determined quantitatively how S. aureus alters its proteome during growth under copper stress conditions, comparing this adaptive response in two different types of growth regime. We found that the adaptive response involves induction of the conserved copper detoxification system as well as induction of enzymes of central carbon metabolism, with only limited induction of proteins involved in the oxidative stress response. Further, we identified a protein that binds copper inside S. aureus cells when stressed by copper excess. This copper-binding enzyme, a glyceraldehyde-3-phosphate dehydrogenase essential for glycolysis, is inhibited by copper in vitro and inside S. aureus cells. Together, our data demonstrate that copper stress leads to the inhibition of glycolysis in S. aureus, and that the bacterium adapts to this stress by altering its central carbon utilisation pathways.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30443649</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>04</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1756-591X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>01</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Metallomics : integrated biometal science</Title>
<ISOAbbreviation>Metallomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Copper stress in Staphylococcus aureus leads to adaptive changes in central carbon metabolism.</ArticleTitle>
<Pagination>
<MedlinePgn>183-200</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1039/c8mt00239h</ELocationID>
<Abstract>
<AbstractText>Copper toxicity has been a long-term selection pressure on bacteria due to its presence in the environment and its use as an antimicrobial agent by grazing protozoa, by phagocytic cells of the immune system, and in man-made medical and commercial products. There is recent evidence that exposure to increased copper stress may have been a key driver in the evolution and spread of methicillin-resistant Staphylococcus aureus, a globally important pathogen that causes significant mortality and morbidity worldwide. Yet it is unclear how S. aureus physiology is affected by copper stress or how it adapts in order to be able to grow in the presence of excess copper. Here, we have determined quantitatively how S. aureus alters its proteome during growth under copper stress conditions, comparing this adaptive response in two different types of growth regime. We found that the adaptive response involves induction of the conserved copper detoxification system as well as induction of enzymes of central carbon metabolism, with only limited induction of proteins involved in the oxidative stress response. Further, we identified a protein that binds copper inside S. aureus cells when stressed by copper excess. This copper-binding enzyme, a glyceraldehyde-3-phosphate dehydrogenase essential for glycolysis, is inhibited by copper in vitro and inside S. aureus cells. Together, our data demonstrate that copper stress leads to the inhibition of glycolysis in S. aureus, and that the bacterium adapts to this stress by altering its central carbon utilisation pathways.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tarrant</LastName>
<ForeName>Emma</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Institute for Cell & Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK. kevin.waldron@ncl.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>P Riboldi</LastName>
<ForeName>Gustavo</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>McIlvin</LastName>
<ForeName>Matthew R</ForeName>
<Initials>MR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stevenson</LastName>
<ForeName>Jack</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barwinska-Sendra</LastName>
<ForeName>Anna</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stewart</LastName>
<ForeName>Louisa J</ForeName>
<Initials>LJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Saito</LastName>
<ForeName>Mak A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Waldron</LastName>
<ForeName>Kevin J</ForeName>
<Initials>KJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>098375/Z/12/Z</GrantID>
<Acronym>WT_</Acronym>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/F015895/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/J014516/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Metallomics</MedlineTA>
<NlmUniqueID>101478346</NlmUniqueID>
<ISSNLinking>1756-5901</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000890">Anti-Infective Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>789U1901C5</RegistryNumber>
<NameOfSubstance UI="D003300">Copper</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.1.-</RegistryNumber>
<NameOfSubstance UI="D005987">Glyceraldehyde-3-Phosphate Dehydrogenases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000890" MajorTopicYN="N">Anti-Infective Agents</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003300" MajorTopicYN="N">Copper</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005987" MajorTopicYN="N">Glyceraldehyde-3-Phosphate Dehydrogenases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013203" MajorTopicYN="N">Staphylococcal Infections</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013211" MajorTopicYN="N">Staphylococcus aureus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>11</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30443649</ArticleId>
<ArticleId IdType="doi">10.1039/c8mt00239h</ArticleId>
<ArticleId IdType="pmc">PMC6350627</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Hosp Infect. 2006 Jul;63(3):289-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16650507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2015 Apr;83(4):1684-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25667262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1993 Dec;5(4):327-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8298639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jan;76(1):150-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19880638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Jun;44(5):1269-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12028379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2010 Dec;78(12):5223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20876289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2003 Oct;149(Pt 10):2749-2758</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14523108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2017 Aug 18;85(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28652309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2010 May;27(5):768-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20379570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Mar 26;274(13):8405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10085071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 9;282(6):3837-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17148438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2018 Apr;20(4):1576-1589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29521441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1971 Nov;44(1):276-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4943714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1992 Apr;174(8):2702-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1556088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1993 Jan;3(1):14-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8490646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2004 Jul;186(13):4085-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15205410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2005 Apr;151(Pt 4):1187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Aug 17;6:8055</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26278781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2011 Sep;13(9):2495-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21812885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2014 Mar;6(3):572-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24382465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2017 Jul 20;18(1):130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28724393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Apr 29;11(4):e1004870</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25923704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Sep;93(6):1259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25074408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):95-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22198771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Mar;47(6):1709-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12622823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 19;106(20):8344-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Oct 23;455(7216):1138-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18948958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Aug 13;285(33):25259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2007 Dec;153(Pt 12):4274-4283</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18048940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemosphere. 2013 Jan;90(3):1195-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23040649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Med Microbiol. 2013 Apr;303(3):114-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23517692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2016 Nov;102(4):628-641</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27528008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Med Microbiol. 2014 Mar;304(2):177-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24480029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Sep 3;525(7567):140-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26308900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Sep 5;301(5638):1383-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2013 Oct 18;8(10):2217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23895035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2013 Jul;57(7):3275-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23629701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Infect Dis. 2017 Oct 13;3(10):744-755</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28850209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hosp Infect. 2010 Jan;74(1):72-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19931938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 2017;70:315-379</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28528650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Apr 15;286(15):13522-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21339296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Dec 4;284(49):33949-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19808669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Sep;81(5):1255-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21736642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Jul;45(2):543-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12123463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Pathog. 1997 Feb;22(2):67-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9049996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2006 Jan 15;90(2):598-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16258041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2017 Feb 23;85(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28031261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2000 Aug;182(16):4394-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10913070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2018 Oct 16;9(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30327441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2012 Mar;194(5):932-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22178968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 Jan 19;13(1):e1006125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28103306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol B Biochem Mol Biol. 2003 Jun;135(2):241-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12798935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Antimicrob Agents. 2018 Jun;51(6):912-917</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29471024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem. 1992 Sep;24(9):1501-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1426532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2000 Nov;68(11):6281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11035736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Oct;184(19):5457-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12218034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2015 Dec 15;212(12):1874-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26048971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Mar;189(5):1616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17189367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Apr 15;6(4):e18617</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21525981</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Barwinska Sendra, Anna" sort="Barwinska Sendra, Anna" uniqKey="Barwinska Sendra A" first="Anna" last="Barwinska-Sendra">Anna Barwinska-Sendra</name>
<name sortKey="Mcilvin, Matthew R" sort="Mcilvin, Matthew R" uniqKey="Mcilvin M" first="Matthew R" last="Mcilvin">Matthew R. Mcilvin</name>
<name sortKey="P Riboldi, Gustavo" sort="P Riboldi, Gustavo" uniqKey="P Riboldi G" first="Gustavo" last="P Riboldi">Gustavo P Riboldi</name>
<name sortKey="Saito, Mak A" sort="Saito, Mak A" uniqKey="Saito M" first="Mak A" last="Saito">Mak A. Saito</name>
<name sortKey="Stevenson, Jack" sort="Stevenson, Jack" uniqKey="Stevenson J" first="Jack" last="Stevenson">Jack Stevenson</name>
<name sortKey="Stewart, Louisa J" sort="Stewart, Louisa J" uniqKey="Stewart L" first="Louisa J" last="Stewart">Louisa J. Stewart</name>
<name sortKey="Waldron, Kevin J" sort="Waldron, Kevin J" uniqKey="Waldron K" first="Kevin J" last="Waldron">Kevin J. Waldron</name>
</noCountry>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Tarrant, Emma" sort="Tarrant, Emma" uniqKey="Tarrant E" first="Emma" last="Tarrant">Emma Tarrant</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000565 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000565 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30443649
   |texte=   Copper stress in Staphylococcus aureus leads to adaptive changes in central carbon metabolism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30443649" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020